How can NGSS practices transform science teaching & learning?

Have you ever heard someone unfamiliar with NGSS ask “Don’t good teachers already know how to teach science well?” Yes… and no. Adopting the Next Generation Science Standards (NGSS) should lead to a transformation in how students learn science, as outlined in Appendix A of A Framework for K-12 Science Education.  It is crucial that students are applying their knowledge of the disciplinary core ideas through the science and engineering practices. But what exactly does this look like in a science class?

3-dimensional learning means that both the crosscutting concepts (CCCs) and the science & engineering practices (SEPs) are as important as the content – also known as disciplinary core ideas (DCIs). I recently wrote a blog post focusing on incorporating CCCs, but it is equally important to consider how students engage in the SEPs. Teachers may think that science class already naturally incorporates the practices, but that is not necessarily true. We should be asking ourselves whether students are acting like SCIENTISTS. Are students doing what scientists would be doing?

Check out this Teaching Channel video about NGSS Science and Engineering Practices (6min). Traditionally, learning science often involved the teacher acting as a knowledge authority to provide content, then students would be given a lab activity in order to confirm results that they are expecting based on what they already know to be true. The shift with NGSS is that STUDENTS should be the ones DOING science – asking questions, designing and conducting investigations, analyzing data, finding relationships, etc. Students should be given more experiences to think deeply, and have more opportunities to think like a scientist. These NGSS parent guides include a table that outlines what there should be ‘less of’ and ‘more of’ in a science classroom. This is a good starting point for thinking about how science classrooms can be transformed.

What are the NGSS science and engineering practices? They are listed below, and are explained in more detail in Appendix F of A Framework for K-12 Science Education:

  1. Asking Questions (science) and Defining Problems (engineering)
  2. Developing and Using Models
  3. Planning and Carrying Out Investigations
  4. Analyzing and Interpreting Data
  5. Using Mathematics and Computational Thinking
  6. Constructing Explanations (science) and Designing Solutions (engineering)
  7. Engaging in Argument from Evidence
  8. Obtaining, Evaluating, and Communicating Information

How can teachers begin to understand what they are already doing well with respect to the SEPs, and where they might improve? The article Assessing Science Practices: Moving Your Class Along a Continuum by Katherine L. McNeill, Rebecca Katsh-Singer and Pam Pelletier is incredibly useful. First, it has a ‘Science Practices Continuum Assessment Tool’ which allows teachers to assess where their students fall for each practice – Not Present, Emergent, Proficient, or Exemplary. This can help teachers to plan instruction that helps students to move along on the continuum. Second, the article also groups the 8 practices into the following categories:

  • Investigating Practices
    • Asking Questions
    • Planning and Carrying Out Investigations
    • Using Mathematics and Computational Thinking
  • Sense Making Practices
    • Developing and Using Models
    • Analyzing and Interpreting Data
    • Constructing Explanations
  • Critiquing Practices
    • Engaging in Argument from Evidence
    • Obtaining, Evaluating and Communicating Information

This makes it easier to envision how to incorporate the practices when designing a unit. Ideally, a unit should start with introducing students to a phenomenon, so that they begin by asking questions. A few years ago I came across the Question Formulation Technique (QFT) from the Right Question Institute. However, at NSTA this year a couple of sessions referred to Questioning for the Next Generation (QNG), which is QFT adapted for NGSS. Love it! Using QNG is a great way to get students to help make sense of a phenomenon and perhaps even having students help to craft a driving question. Near the beginning of the unit, students should often develop a model to explain the phenomenon. Ideally, students’ models will be improved throughout the course of a unit as their understanding deepens through engaging with other practices, such as planning and carrying out investigations and analyzing and interpreting data.

For teachers new to NGSS, what are some simple strategies for incorporating the SEPs in a way that honors the intention of the K-12 Framework and NGSS?

  • Posting medium size posters of the SEPs means teachers can easily refer to them during class. (These are from @paulandersen’s amazing site The Wonder of Science.) It is helpful to post cards for the main CCC and SEP (practice) with the content learning target(s) for the day.This helps students to understand the 3D focus of the lesson. Refer to these both at the beginning and throughout the lesson.
  • Teachers can refer to more than one CCC and/or SEP during a lesson, even if they are not all assessed. In fact, at times it can be difficult to refer to a CCC &/or SEP in isolation. (See link for STEM Teaching Tools Practice Brief 3 below.)
  • As you plan a lesson or unit, be sure to plan in advance for incorporating at least one practice each lesson. You can find the continuum mentioned above AND instructional strategies for ALL practices on the Instructional Leadership for Science Practices. Very useful!


Here are some other useful resources:

Matrix of Science and Engineering Practices

This translates appendix F from NGSS into teacher friendly language. It breaks down each practice by grade band K-2, 3-5, 6-8, and 9-12. 

Appendix F: Science and Engineering Practices

The intent of this appendix is to describe what each of these eight practices implies about what students can do. Its purpose is to enable readers to better understand the performance expectations.

Appendix I: Engineering Design in NGSS

STEM Teaching Tools Practice Brief 3

Practices should not stand alone: How to sequence practices in a cascade to support student investigations


What IS Innovation?

This is the second year that I have been teaching students in a new program called Innovation Institute at Shanghai American School. I couldn’t help but reflect on this program as I read Part 1 of The Innovator’s Mindset. In fact, I actually read this book previously, but I am reading the book through a different lens now that I am teaching in the Innovation Institute. I am so grateful that my colleagues and I seem to be on the right track with this program…. our Institute is something “new and better” for students who want to learn in a collaborative, integrated, project-based learning environment.

I completely agree that we need to prepare students for jobs that do not currently exist, and it is our job as educators to help learners become confident creators, effective leaders and CRITICAL THINKERS. I love this short film (11min) The Adaptable Mind that says the skills people need to flourish in today’s world are creativity, curiosity, initiative, multi-disciplinary thinking, and empathy. Students have access to so much knowledge that what they really need to know is what to DO with this knowledge. ‘Soft skills’ such as those mentioned in The Adaptable Mind or the 4C’s (collaboration, communication, creativity, critical thinking) are becoming more and more valued. These ‘soft skills’ are often what set students or prospective employees apart from everyone else.

The following quote in Chapter 2: The Innovators Mindset really resonated with me:

We need to move beyond the idea that an education is something that is provided for us and toward the idea that an education is something that we create for ourselves. – Stephen Downes (2010)

Today, I shared the above quote with my Innovation Institute students before they spent time finalizing their ideology, mechanics and dynamics for a game that they are creating relating to stimulus material about competition. They will create their first prototype this week. I reminded them that they will get out of this project what they put into it; the depth of thought and how much they challenge each other will determine how much they learn and grow.

Another aspect of this week’s reading that resonated with me is the idea of the innovator’s mindset. I have long been a fan of Carol Dweck and have encouraged a growth mindset in my math classes in particular. In fact, I have shown this amazing video A Math Major Talks About Fear to my high school math students for the last three years and I have had my grade 9 students complete the free online course from Stanford called How to Learn Math: For Students. I have also spoken to my students about the importance of resiliency and grit in the context of having a growth mindset. However, I love that I can now take this a step further with the innovator’s mindset – students need to CREATE something with the knowledge they have acquired. I often intentionally plan units and lessons around students creating in order to demonstrate their understanding, but I have could do a better job of making sure that students are aware of WHY creating something is so important. If students create something ‘new and better’ – which they certainly have the opportunity to do frequently in the Innovation Institute – they are certainly pushing themselves to deeply understand concepts and think critically about what they have learned and how to demonstrate their understanding.

So why do I feel more confident that the Innovation Institute at Shanghai American School is on the right track after #IMMOOC Week 2? Students in the Innovation Institute are focusing on the 4C’s, visible thinking strategies and design thinking. Students are learning about empathy as they collaborate and work through conflict with their peers. Students have many opportunities to learn to be comfortable with uncertainty or ambiguity, sharing ideas, accepting criticism, and taking risks. The students who have opted to participate in the Innovation Institute are taking a risk simply by choosing to be educated in a way that is new and different from their previous experience.

I have been inspired by my students and colleagues in so many ways this year. I have never before described myself as ‘innovative’, but now I hope to challenge myself to find NEW and BETTER ways to demonstrate an innovator’s mindset.