Ideation (Brainstorming)

Do your students need help to effectively brainstorm? Perhaps they default to sharing out ideas in an unstructured, open discussion? If so, they would likely benefit from being explicitly taught some useful strategies for brainstorming (ideation). This will ensure students are aware that there are a variety of ideation strategies that they can choose from, depending on their team needs at a particular time.

Innovation Institute at Shanghai American School relies on ideation as part of the design thinking process for each interdisciplinary project. However, it is not always easy for adults – let alone 9th or 10th graders! – to come up with great ideas as a collaborative team. I’ve been doing some prep work with other instructional coaches at SAS in order to help guide some discussions around choosing specific ideation strategies to be a focus in the Innovation Institute program.

I was thrilled when an Institute colleague shared several great sites with me that she has used on occasion when ideation strategies were needed. The Interaction Design Foundation website, which is very useful, says that ideation is the heart of design thinking. That article, in addition to MindTools and this Wrike article, list numerous ideation strategies. I combined strategies (predominantly from these three sites) to make a useful overview that lists the what, why, when, and how of 17 ideation strategies. I would never share that many strategies with students, but I appreciate having so many strategies in one place in order to make easy decisions about which strategies are most appropriate to teach students at a specific time. The image below is of a document that summarizes some fantastic ideation techniques, predominantly from the sites mentioned above. As an instructional coach, it will also be helpful for me to refer to this overview if I need an ideation strategy for a meeting or workshop that I am facilitating.

Screen Shot 2018-04-14 at 6.00.41 PM

Are there other useful sites for ideation strategies? Are there any great strategies that are missing from this overview that should be included?


How can NGSS practices transform science teaching & learning?

Have you ever heard someone unfamiliar with NGSS ask “Don’t good teachers already know how to teach science well?” Yes… and no. Adopting the Next Generation Science Standards (NGSS) should lead to a transformation in how students learn science, as outlined in Appendix A of A Framework for K-12 Science Education.  It is crucial that students are applying their knowledge of the disciplinary core ideas through the science and engineering practices. But what exactly does this look like in a science class?

3-dimensional learning means that both the crosscutting concepts (CCCs) and the science & engineering practices (SEPs) are as important as the content – also known as disciplinary core ideas (DCIs). I recently wrote a blog post focusing on incorporating CCCs, but it is equally important to consider how students engage in the SEPs. Teachers may think that science class already naturally incorporates the practices, but that is not necessarily true. We should be asking ourselves whether students are acting like SCIENTISTS. Are students doing what scientists would be doing?

Check out this Teaching Channel video about NGSS Science and Engineering Practices (6min). Traditionally, learning science often involved the teacher acting as a knowledge authority to provide content, then students would be given a lab activity in order to confirm results that they are expecting based on what they already know to be true. The shift with NGSS is that STUDENTS should be the ones DOING science – asking questions, designing and conducting investigations, analyzing data, finding relationships, etc. Students should be given more experiences to think deeply, and have more opportunities to think like a scientist. These NGSS parent guides include a table that outlines what there should be ‘less of’ and ‘more of’ in a science classroom. This is a good starting point for thinking about how science classrooms can be transformed.

What are the NGSS science and engineering practices? They are listed below, and are explained in more detail in Appendix F of A Framework for K-12 Science Education:

  1. Asking Questions (science) and Defining Problems (engineering)
  2. Developing and Using Models
  3. Planning and Carrying Out Investigations
  4. Analyzing and Interpreting Data
  5. Using Mathematics and Computational Thinking
  6. Constructing Explanations (science) and Designing Solutions (engineering)
  7. Engaging in Argument from Evidence
  8. Obtaining, Evaluating, and Communicating Information

How can teachers begin to understand what they are already doing well with respect to the SEPs, and where they might improve? The article Assessing Science Practices: Moving Your Class Along a Continuum by Katherine L. McNeill, Rebecca Katsh-Singer and Pam Pelletier is incredibly useful. First, it has a ‘Science Practices Continuum Assessment Tool’ which allows teachers to assess where their students fall for each practice – Not Present, Emergent, Proficient, or Exemplary. This can help teachers to plan instruction that helps students to move along on the continuum. Second, the article also groups the 8 practices into the following categories:

  • Investigating Practices
    • Asking Questions
    • Planning and Carrying Out Investigations
    • Using Mathematics and Computational Thinking
  • Sense Making Practices
    • Developing and Using Models
    • Analyzing and Interpreting Data
    • Constructing Explanations
  • Critiquing Practices
    • Engaging in Argument from Evidence
    • Obtaining, Evaluating and Communicating Information

This makes it easier to envision how to incorporate the practices when designing a unit. Ideally, a unit should start with introducing students to a phenomenon, so that they begin by asking questions. A few years ago I came across the Question Formulation Technique (QFT) from the Right Question Institute. However, at NSTA this year a couple of sessions referred to Questioning for the Next Generation (QNG), which is QFT adapted for NGSS. Love it! Using QNG is a great way to get students to help make sense of a phenomenon and perhaps even having students help to craft a driving question. Near the beginning of the unit, students should often develop a model to explain the phenomenon. Ideally, students’ models will be improved throughout the course of a unit as their understanding deepens through engaging with other practices, such as planning and carrying out investigations and analyzing and interpreting data.

For teachers new to NGSS, what are some simple strategies for incorporating the SEPs in a way that honors the intention of the K-12 Framework and NGSS?

  • Posting medium size posters of the SEPs means teachers can easily refer to them during class. (These are from @paulandersen’s amazing site The Wonder of Science.) It is helpful to post cards for the main CCC and SEP (practice) with the content learning target(s) for the day.This helps students to understand the 3D focus of the lesson. Refer to these both at the beginning and throughout the lesson.
  • Teachers can refer to more than one CCC and/or SEP during a lesson, even if they are not all assessed. In fact, at times it can be difficult to refer to a CCC &/or SEP in isolation. (See link for STEM Teaching Tools Practice Brief 3 below.)
  • As you plan a lesson or unit, be sure to plan in advance for incorporating at least one practice each lesson. You can find the continuum mentioned above AND instructional strategies for ALL practices on the Instructional Leadership for Science Practices. Very useful!


Here are some other useful resources:

Matrix of Science and Engineering Practices

This translates appendix F from NGSS into teacher friendly language. It breaks down each practice by grade band K-2, 3-5, 6-8, and 9-12. 

Appendix F: Science and Engineering Practices

The intent of this appendix is to describe what each of these eight practices implies about what students can do. Its purpose is to enable readers to better understand the performance expectations.

Appendix I: Engineering Design in NGSS

STEM Teaching Tools Practice Brief 3

Practices should not stand alone: How to sequence practices in a cascade to support student investigations